ESP32-C3 Family Datasheet

Ultra-Low-Power SoC with RISC-V Single-Core CPU

Supporting IEEE 802.11b/g/n (2.4 GHz Wi-Fi) and Bluetooth 5 (LE)

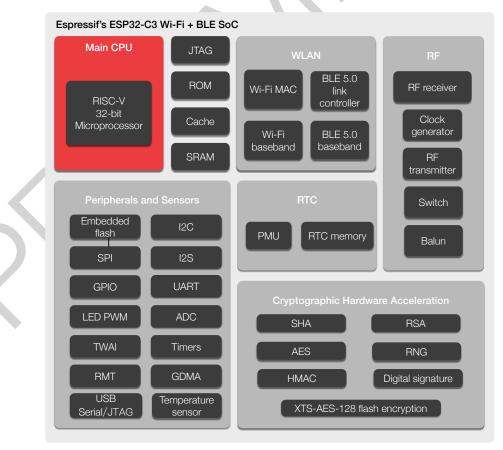
Including:

ESP32-C3

ESP32-C3FN4

ESP32-C3FH4

Prerelease version 0.7 Espressif Systems Copyright © 2021


Product Overview

ESP32-C3 family is an ultra-low-power and highly-integrated MCU-based SoC solution that supports 2.4 GHz Wi-Fi and Bluetooth[®] Low Energy (Bluetooth LE). It has:

- A complete Wi-Fi subsystem that complies with IEEE 802.11b/g/n protocol and supports Station mode, SoftAP mode, SoftAP + Station mode, and promiscuous mode
- A Bluetooth LE subsystem that supports features of Bluetooth 5 and Bluetooth mesh
- State-of-the-art power and RF performance
- 32-bit RISC-V single-core processor with a four-stage pipeline that operates at up to 160 MHz
- 400 KB of SRAM (16 KB for cache) and 384 KB of ROM on the chip, and SPI, Dual SPI, Quad

SPI, and QPI interfaces that allow connection to external flash

- Reliable security features ensured by
 - Cryptographic hardware accelerators that support AES-128/256, Hash, RSA, HMAC, digital signature and secure boot
 - Random number generator
 - Permission control on accessing internal memory, external memory, and peripherals
 - External memory encryption and decryption
- Rich set of peripheral interfaces and GPIOs, ideal for various scenarios and complex applications

Block Diagram

Figure 1: Block Diagram of ESP32-C3

Features

Wi-Fi

- IEEE 802.11 b/g/n-compliant
- Supports 20 MHz, 40 MHz bandwidth in 2.4 GHz band
- 1T1R mode with data rate up to 150 Mbps
- Wi-Fi Multimedia (WMM)
- TX/RX A-MPDU, TX/RX A-MSDU
- Immediate Block ACK
- Fragmentation and defragmentation
- Transmit opportunity (TXOP)
- Automatic Beacon monitoring (hardware TSF)
- 4 × virtual Wi-Fi interfaces
- Simultaneous support for Infrastructure BSS in Station mode, SoftAP mode, Station + SoftAP mode, and promiscuous mode

Note that when ESP32-C3 family scans in Station mode, the SoftAP channel will change along with the Station channel

- Antenna diversity
- 802.11mc FTM

Bluetooth

- Bluetooth LE: Bluetooth 5, Bluetooth mesh
- Speed: 125 Kbps, 500 Kbps, 1 Mbps, 2 Mbps
- Advertising extensions
- Multiple advertisement sets
- Channel selection algorithm #2

CPU and Memory

- 32-bit RISC-V single-core processor, up to 160 MHz
- 384 KB ROM
- 400 KB SRAM (16 KB for cache)
- 8 KB SRAM in RTC
- Embedded flash (see details in Chapter 1 Family Member Comparison)

• SPI, Dual SPI, Quad SPI, and QPI interfaces that allow connection to multiple external flash

Advanced Peripheral Interfaces

- 22 × programmable GPIOs
- 2 × 12-bit SAR ADCs, up to 6 channels
- 1 × temperature sensor
- 3 × SPI
- 2 × UART
- 1 × I2C
- 1 × I2S
- Remote control peripheral, with 2 transmit channels and 2 receive channels
- LED PWM controller, up to 6 channels
- Full-speed USB Serial/JTAG controller
- General DMA controller, with 3 transmit channels and 3 receive channels
- 1 × TWAI[®] controller (compatible with ISO 11898-1)

Low Power Management

• Power Management Unit with five power modes

Security

- Secure boot
- Flash encryption
- 4096-bit OTP, up to 1792 bits for users
- Cryptographic hardware acceleration:
 - AES-128/256 (FIPS PUB 197)
- Permission Control
- SHA Accelerator (FIPS PUB 180-4)
- RSA Accelerator
- Random Number Generator (RNG)
- HMAC
- Digital signature

Applications (A Non-exhaustive List)

With ultra-low power consumption, ESP32-C3 family is an ideal choice for IoT devices in the following areas:

- Smart Home
 - Light control
 - Smart button
 - Smart plug
 - Indoor positioning
- Industrial Automation
 - Industrial robot
 - Mesh network
 - Human machine interface (HMI)
 - Industrial field bus
- Health Care
 - Health monitor
 - Baby monitor
- <u>Consumer Electronics</u>
 - Smart watch and bracelet
 - Over-the-top (OTT) devices

- Wi-Fi and Bluetooth speaker
- Logger toys and proximity sensing toys
- Smart Agriculture
 - Smart greenhouse
 - Smart irrigation
 - Agriculture robot
- Retail and Catering
 - POS machines
 - Service robot
- Audio Device
 - Internet music players
 - Live streaming devices
 - Internet radio players
- Generic Low-power IoT Sensor Hubs
- Generic Low-power IoT Data Loggers

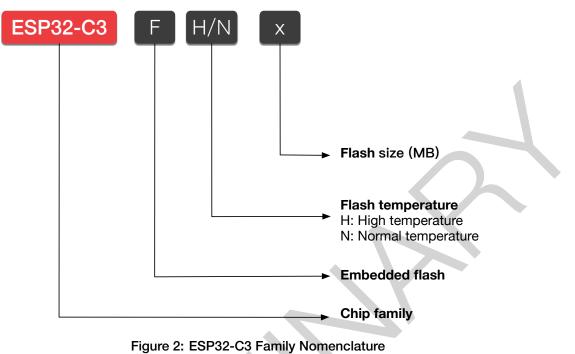
Contents

Product Overview 1 Block Diagram 1 Features 2 Applications З Family Member Comparison 1 8 1.1 Family Nomenclature 8 Comparison 1.2 8 **Pin Definition** 2 9 2.1 Pin Layout 9 2.2 Pin Description 9 2.3 Power Scheme 11 2.4 Strapping Pins 12 **Functional Description** 3 15 3.1 CPU and Memory 15 3.1.1 CPU 15 3.1.2 Internal Memory 15 3.1.3 External Flash 15 3.1.4 Address Mapping Structure 16 3.1.5 Cache 16 3.2 System Clocks 16 3.2.1 CPU Clock 17 3.2.2 RTC Clock 17 3.3 Analog Peripherals 17 3.3.1 Analog-to-Digital Converter (ADC) 17 3.3.2 Temperature Sensor 17 3.4 Digital Peripherals 17 3.4.1 General Purpose Input / Output Interface (GPIO) 17 3.4.2 Serial Peripheral Interface (SPI) 19 3.4.3 Universal Asynchronous Receiver Transmitter (UART) 20 3.4.4 I2C Interface 20 3.4.5 I2S Interface 20 3.4.6 Remote Control Peripheral 20 3.4.7 LED PWM Controller 20 3.4.8 General DMA Controller 21 3.4.9 USB Serial/JTAG Controller 21 3.4.10 TWAI[®] Controller 21 3.5 Radio and Wi-Fi 21 22 3.5.1 2.4 GHz Receiver 3.5.2 2.4 GHz Transmitter 22 22 3.5.3 Clock Generator

	00
3.5.4 Wi-Fi Radio and Baseband	22
3.5.5 Wi-Fi MAC	23
3.5.6 Networking Features	23
3.6 Bluetooth LE	23
3.6.1 Bluetooth LE Radio and PHY	23
3.6.2 Bluetooth LE Link Layer Controller	24
3.7 Low Power Management	24
3.8 Timers	24
3.8.1 General Purpose Timers	24
3.8.2 System Timer	25
3.8.3 Watchdog Timers	25
3.9 Cryptographic Hardware Accelerators	25
3.10 Physical Security Features	26
3.11 Peripheral Pin Configurations	26
4 Electrical Characteristics	28
4.1 Absolute Maximum Ratings	28
4.2 Recommended Operating Conditions	28
4.3 VDD_SPI Output Characteristics	28
4.4 DC Characteristics (3.3 V, 25 °C)	29
4.5 ADC Characteristics	29
4.6 Current Consumption	29
4.7 Reliability	30
4.8 Wi-Fi Radio	31
4.8.1 Wi-Fi RF Transmitter (TX) Specifications	31
4.8.2 Wi-Fi RF Receiver (RX) Specifications	32
4.9 Bluetooth LE Radio	33
4.9.1 Bluetooth LE RF Transmitter (TX) Specifications	33
4.9.2 Bluetooth LE RF Receiver (RX) Specifications	35
5 Package Information	37
Revision History	38
Solutions, Documentation and Legal Information	39
▼	

List of Tables

1	ESP32-C3 Family Member Comparison	8
2	Pin Description	9
3	Description of ESP32-C3 Family Power-up and Reset Timing Parameters	12
4	Strapping Pins	13
5	Parameter Descriptions of Setup and Hold Times for the Strapping Pin	14
6	IO MUX Pin Functions	18
7	Power-Up Glitches on Pins	19
8	Connection Between ESP32-C3 Family and External Flash	20
9	Peripheral Pin Configurations	26
10	Absolute Maximum Ratings	28
11	Recommended Operating Conditions	28
12	VDD_SPI Output Characteristics	28
13	DC Characteristics (3.3 V, 25 °C)	29
14	ADC Characteristics	29
15	Current Consumption Depending on RF Modes	30
16	Current Consumption Depending on Work Modes	30
17	Reliability Qualifications	30
18	Frequency	31
19	TX Power with Spectral Mask and EVM Meeting 802.11 Standards	31
20	TX EVM Test	31
21	RX Sensitivity	32
22	Maximum RX Level	32
23	RX Adjacent Channel Rejection	33
24	Transmitter General Characteristics	33
25	Transmitter Characteristics - Bluetooth LE 1M	33
26	Transmitter Characteristics - Bluetooth LE 2M	34
27	Transmitter Characteristics - Bluetooth LE 125K	34
28	Transmitter Characteristics - Bluetooth LE 500K	34
29	Receiver Characteristics - Bluetooth LE 1M	35
30	Receiver Characteristics - Bluetooth LE 2M	35
31	Receiver Characteristics - Bluetooth LE 125K	36
32	Receiver Characteristics - Bluetooth LE 500K	36
\langle	$\mathbf{\mathcal{T}}$	


List of Figures

- 1 Block Diagram of ESP32-C3
- 2 ESP32-C3 Family Nomenclature
- 3 ESP32-C3 Pin Layout (Top View)
- 4 ESP32-C3 Family Power Scheme
- 5 ESP32-C3 Family Power-up and Reset Timing
- 6 Setup and Hold Times for the Strapping Pin
- 7 Address Mapping Structure
- 8 QFN32 (5×5 mm) Package

- 9
- 11
- 12 13
- 16
- 37

1. Family Member Comparison

1.1 Family Nomenclature

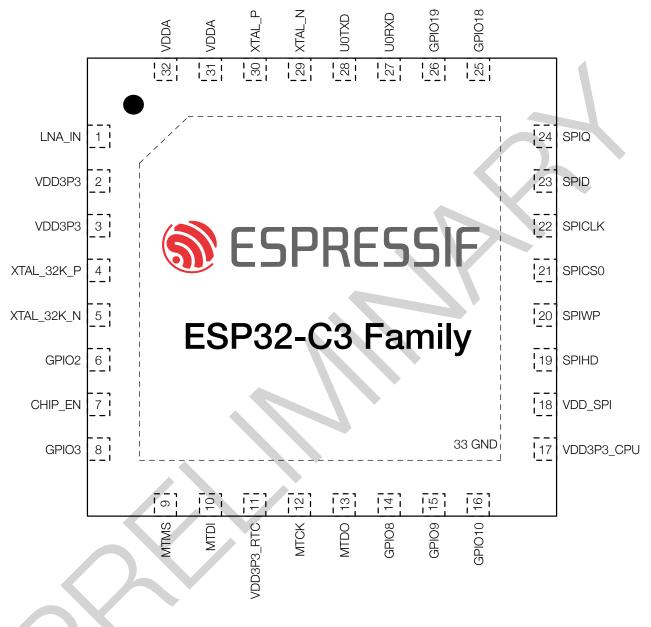

1.2 Comparison

Table 1: ESP32-C3 Family Member Comparison

Ordering Code	Embedded Flash	Ambient Temperature (°C)	Package (mm)
ESP32-C3	-	$-40 \sim 105$	QFN32 (5*5)
ESP32-C3FN4	4 MB	$-40 \sim 85$	QFN32 (5*5)
ESP32-C3FH4	4 MB	-40 ~ 105	QFN32 (5*5)

2. Pin Definition

2.1 Pin Layout

2.2 Pin Description

Table 2: Pin Description

Name	No.	Туре	Power Domain	Function
LNA_IN	1	I/O	—	RF input and output
VDD3P3	2	P_A	— Analog power supply	
VDD3P3	3	P_A		Analog power supply
XTAL_32K_P	4	I/O/T	VDD3P3_RTC	GPIO0, ADC1_CH0, XTAL_32K_P

Name	No.	Туре	Power Domain	Function
XTAL_32K_N	5	I/O/T	VDD3P3_RTC	GPIO1, ADC1_CH1, XTAL_32K_N
GPIO2	6	I/O/T	VDD3P3_RTC	GPIO2, ADC1_CH2, FSPIQ
				High: on, enables the chip.
CHIP_EN	7	I	VDD3P3_RTC	Low: off, the chip powers off.
				Note: Do not leave the CHIP_PU pin floating.
GPIO3	8	I/O/T	VDD3P3_RTC	GPIO3, ADC1_CH3
MTMS	9	I/O/T	VDD3P3_RTC	GPIO4, ADC1_CH4, FSPIHD, MTMS
MTDI	10	I/O/T	VDD3P3_RTC	GPIO5, ADC2_CH0, FSPIWP, MTDI
VDD3P3_RTC	11	P_D	—	Input power supply for RTC
MTCK	12	I/O/T	VDD3P3_CPU	GPIO6, FSPICLK, MTCK
MTDO	13	I/O/T	VDD3P3_CPU	GPIO7, FSPID, MTDO
GPIO8	14	I/O/T	VDD3P3_CPU	GPIO8
GPIO9	15	I/O/T	VDD3P3_CPU	GPIO9
GPIO10	16	I/O/T	VDD3P3_CPU	GPIO10, FSPICS0
VDD3P3_CPU	17	P_D	—	Input power supply for CPU IO
VDD_SPI	18	I/O/T/P _D	VDD3P3_CPU	GPIO11, output power supply for flash
SPIHD	19	I/O/T	VDD3P3_CPU	GPIO12, SPIHD
SPIWP	20	I/O/T	VDD3P3_CPU	GPIO13, SPIWP
SPICS0	21	I/O/T	VDD3P3_CPU	GPIO14, SPICSO
SPICLK	22	I/O/T	VDD3P3_CPU	GPIO15, SPICLK
SPID	23	I/O/T	VDD3P3_CPU	GPIO16, SPID
SPIQ	24	I/O/T	VDD3P3_CPU	GPIO17, SPIQ
GPIO18	25	I/O/T	VDD3P3_CPU	GPIO18, USB_D-
GPIO19	26	I/O/T	VDD3P3_CPU	GPIO19, USB_D+
UORXD	27	I/O/T	VDD3P3_CPU	GPIO20, UORXD
UOTXD	28	I/O/T	VDD3P3_CPU	GPIO21, U0TXD
XTAL_N	29		_	External crystal output
XTAL_P	30	—	-	External crystal input
VDDA	31	P_A	—	Analog power supply
VDDA	32	P_A	—	Analog power supply
GND	33	G		Ground

¹ P_A : analog power supply; P_D : power supply for RTC IO; I: input; O: output; T: high impedance.

² Ports of embedded flash correspond to pins of ESP32-C3FN4 and ESP32-C3FH4 as follows:

- CS# = SPICS0
- IOO/DI = SPID
- IO1/DO = SPIQ
- CLK = SPICLK
- IO2/WP# = SPIWP
- IO3/HOLD# = SPIHD

These pins are not recommended for other uses.

- ³ For the data port connection between ESP32-C3 family and external flash please refer to Section 3.4.2 *Serial Peripheral Interface (SPI)*.
- ⁴ The pin function in this table refers only to some fixed settings and do not cover all cases for signals that can be input and output through the GPIO matrix. For more information on the GPIO matrix, please refer to Chapter IO MUX and GPIO Matrix (GPIO, IO_MUX) in <u>ESP32-C3 Technical Reference Manual</u>.

2.3 **Power Scheme**

Digital pins of ESP32-C3 family are divided into four different power domains:

- VDD3P3_CPU
- VDD_SPI
- VDD3P3_RTC

VDD3P3_CPU is the input power supply for CPU.

VDD_SPI can be an input power supply or an output power supply.

VDD3P3_RTC is the input power supply for RTC analog domain and CPU.

The power scheme diagram is shown in Figure 4.

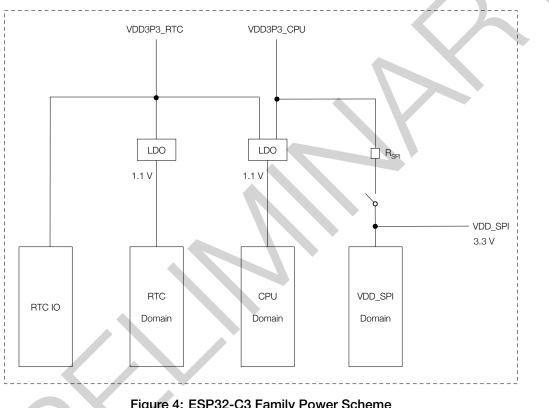


Figure 4: ESP32-C3 Family Power Scheme

When working as an output power supply, VDD_SPI can be powered by VDD3P3_CPU via R_{SPI} (nominal 3.3 V). VDD_SPI can be powered off via software to minimize the current leakage of flash in Deep-sleep mode.

Notes on CHIP_PU:

Figure 5 shows the power-up and reset timing of ESP32-C3 family. Details about the parameters are listed in Table 3.

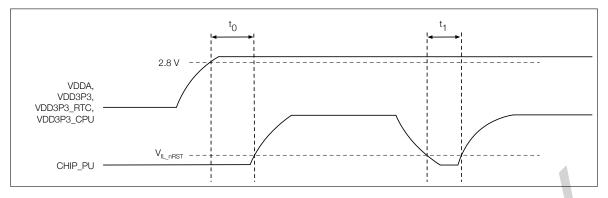


Figure 5: ESP32-C3 Family Power-up and Reset Timing

Table 0. Description of COD00 C0 Consil	y Power-up and Reset Timing Parameters
Table 3: Description of ESP32-U3 Family	v Power-up and Beset Liming Parameters
	y i onor up and nooot inning i arametoro

Parameter	Description	Min (µs)
t ₀	Time between bringing up the VDDA, VDD3P3, VDD3P3_RTC, and VDD3P3_CPU rails, and activating CHIP_PU	50
t ₁	Duration of CHIP_PU signal level $< V_{IL_nRST}$ (refer to its value in Table 13) to reset the chip	50

2.4 Strapping Pins

ESP32-C3 family has three strapping pins:

- GPIO2
- GPI08
- GPIO9
- GPIO10

Software can read the values of GPIO2, GPIO8 and GPIO10 from GPIO_STRAPPING field in GPIO_STRAP_REG register. For register description, please refer to Section GPIO Matrix Register Summary in *ESP32-C3 Technical Reference Manual*.

During the chip's system reset, the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down.

Types of system reset include:

- power-on-reset
- RTC watchdog reset
- brownout reset
- analog super watchdog reset
- crystal clock glitch detection reset

By default, GPIO9 is connected to the internal pull-up resistors. If GPIO9 is not connected or connected to an external high-impedance circuit, the internal weak pull-up/pull-down will determine its default input level.

To change the strapping bit values, you can apply the external pull-down/pull-up resistances, or use the host MCU's GPIOs to control the voltage level of these pins when powering on ESP32-C3 family.

After reset, the strapping pins work as normal-function pins.

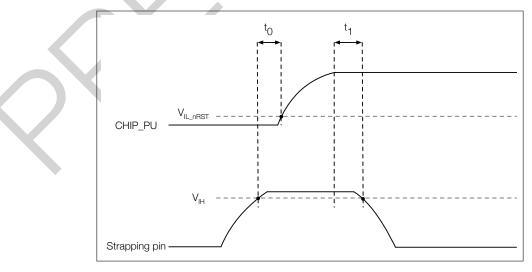

Refer to Table 4 for a detailed boot-mode configuration of the strapping pins.

Table 4: Strapping Pins

Booting Mode ¹					
Pin	Default	SPI Boot	Download Boot		
GPIO2	N/A	1	1		
GPIO8	N/A	Don't care	1		
GPIO9	Pull-up	1	0		
	E	nabling/Disabling ROM Code Print	During Booting		
Pin	Default	Functionality			
		When the value of eFuse field EFUS	E_UART_PRINT_CONTROL is		
		0 (default), print is enabled and not controlled by GPIO8.			
GPIO8	N/A 1, if GPIO8 is 0, print is enabled; if GPIO8 is 1, it is disabled.		GPIO8 is 1, it is disabled.		
		2, if GPIO8 is 0, print is disabled; if GPIO8 is 1, it is enabled.			
		3, print is disabled and not controlled by GPIO8.			
		Controlling JTAG Signal Source Du	uring Booting		
Pin	Default	Functionality			
		When the value of eFuse bit EFUSE	_STRAP_JTAG_SEL is		
GPIO10	N/A	0 (default), JTAG signals come from	USB Serial/JTAG controller.		
		1, if GPIO10 is 0, JTAG signals come from chip pins;			
		if GPIO10 is 1, JTAG signals com	e from USB Serial/JTAG controller.		

¹ The strapping combination of GPIO8 = 0 and GPIO9 = 0 is invalid and will trigger unexpected behavior.

Figure 6 shows the setup and hold times for the strapping pin before and after the CHIP_PU signal goes high. Details about the parameters are listed in Table 5.

Parameter	Description	
to	Setup time before CHIP_PU goes from low to high	0
t ₁	Hold time after CHIP_PU goes high	

Table 5: Parameter Descriptions of Setup and Hold Times for the Strapping Pin

3. Functional Description

This chapter describes the functions of ESP32-C3 family.

3.1 CPU and Memory

3.1.1 CPU

ESP32-C3 family has a low-power 32-bit RISC-V single-core microprocessor with the following features:

- four-stage pipeline that supports a clock frequency of up to 160 MHz
- RV32IMC ISA
- 32-bit multiplier and 32-bit divider
- up to 32 vectored interrupts at seven priority levels
- up to 8 hardware breakpoints/watchpoints
- up to 16 PMP regions
- JTAG for debugging

3.1.2 Internal Memory

ESP32-C3's internal memory includes:

- 384 KB of ROM: for booting and core functions.
- 400 KB of on-chip SRAM: for data and instructions. Of the 400 KB SRAM, 16 KB is configured for cache
- **RTC memory**: 8 KB of SRAM that can be accessed by the main CPU. It can retain data in Deep-sleep mode.
- 4 Kbit of eFuse: 1792 bits are reserved for user data, such as encryption key and device ID.
- Embedded flash : See details in Chapter 1 Family Member Comparison.

3.1.3 External Flash

ESP32-C3 family supports SPI, Dual SPI, Quad SPI, and QPI interfaces that allow connection to multiple external flash.

CPU's instruction memory space and read-only data memory space can map into external flash of ESP32-C3, whose size can be 16 MB at most. ESP32-C3 family supports hardware encryption/decryption based on XTS-AES to protect developers' programs and data in flash.

Through high-speed caches, ESP32-C3 family can support at a time up to:

- 8 MB of instruction memory space which can map into flash as individual blocks of 64 KB. 8-bit, 16-bit and 32-bit reads are supported.
- 8 MB of data memory space which can map into flash as individual blocks of 64 KB. 8-bit, 16-bit and 32-bit reads are supported.

Note:

After ESP32-C3 family is initialized, software can customize the mapping of external flash into the CPU address space.

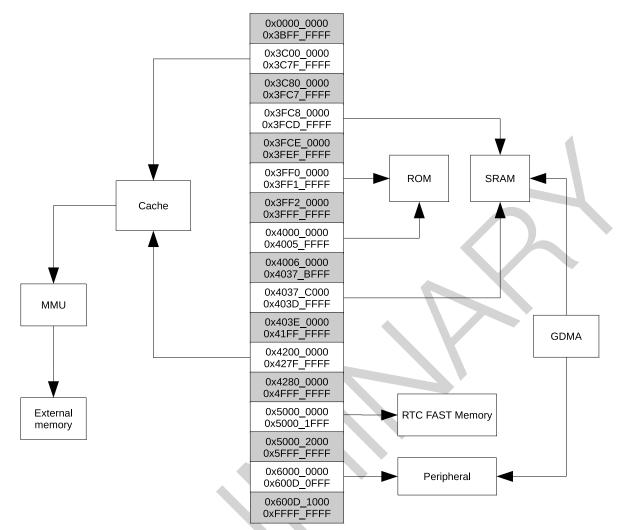


Figure 7: Address Mapping Structure

Note:

The memory space with gray background is not available for use.

3.1.5 Cache

ESP32-C3 family has an eight-way set associative cache. This cache is read-only and has the following features:

- size: 16 KB
- block size: 32 bytes
- pre-load function
- lock function
- critical word first and early restart

3.2 System Clocks

3.2.1 CPU Clock

The CPU clock has three possible sources:

- external main crystal clock
- internal 20 MHz oscillator
- PLL clock

The application can select the clock source from the three clocks above. The selected clock source drives the CPU clock directly, or after division, depending on the application.

3.2.2 RTC Clock

The RTC slow clock is used for RTC counter, RTC watchdog and low-power controller. It has three possible sources:

- external low-speed (32 kHz) crystal clock
- internal RC oscillator (typically about 150 kHz, and adjustable)
- internal 78.125 kHz clock (derived from the internal 20 MHz oscillator divided by 256)

The RTC fast clock is used for RTC peripherals and sensor controllers. It has two possible sources:

- external main crystal clock divided by 2
- internal 20 MHz oscillator

3.3 Analog Peripherals

3.3.1 Analog-to-Digital Converter (ADC)

ESP32-C3 family integrates two 12-bit SAR ADCs and supports measurements on 6 channels (analog-enabled pins). For ADC characteristics, please refer to Table 14.

3.3.2 Temperature Sensor

The temperature sensor generates a voltage that varies with temperature. The voltage is internally converted via an ADC into a digital value.

The temperature sensor has a range of -40 °C to 125 °C. It is designed primarily to sense the temperature changes inside the chip. The temperature value depends on factors like microcontroller clock frequency or I/O load. Generally, the chip's internal temperature is higher than the ambient temperature.

3.4 Digital Peripherals

3.4.1 General Purpose Input / Output Interface (GPIO)

ESP32-C3 family has 22 GPIO pins which can be assigned various functions by configuring corresponding registers. Besides digital signals, some GPIOs can be also used for analog functions, such as ADC.

All GPIOs have selectable internal pull-up or pull-down, or can be set to high impedance. When these GPIOs are configured as an input, the input value can be read by software through the register. Input GPIOs can also be set to generate edge-triggered or level-triggered CPU interrupts. All digital IO pins are bi-directional, non-inverting and tristate, including input and output buffers with tristate control. These pins can be multiplexed with other functions, such as the UART, SPI, etc. For low-power operations, the GPIOs can be set to holding state.

The IO MUX and the GPIO matrix are used to route signals from peripherals to GPIO pins. Together they provide highly configurable I/O. Using GPIO Matrix, peripheral input signals can be configured from any IO pins while peripheral output signals can be configured to any IO pins. Table 6 shows the IO MUX functions of each pin. For more information about IO MUX and GPIO matrix, please refer to Chapter IO MUX and GPIO Matrix (GPIO, IO_MUX) in *ESP32-C3 Technical Reference Manual*.

Name	No.	Function 0	Function 1	Function 2	Reset	Notes
XTAL_32K_P	4	GPIO0	GPIO0		0	R
XTAL_32K_N	5	GPIO1	GPIO1		0	R
GPIO2	6	GPIO2	GPIO2	FSPIQ	1	R
GPIO3	8	GPIO3	GPIO3		1	R
MTMS	9	MTMS	GPIO4	FSPIHD	1	R
MTDI	10	MTDI	GPIO5	FSPIWP	1	R
MTCK	12	MTCK	GPIO6	FSPICLK	1*	G
MTDO	13	MTDO	GPIO7	FSPID	1	G
GPIO8	14	GPIO8	GPIO8		1	_
GPIO9	15	GPIO9	GPIO9		3	_
GPIO10	16	GPIO10	GPIO10	FSPICSO	1	G
VDD_SPI	18	GPIO11	GPIO11		0	_
SPIHD	19	SPIHD	GPIO12	—	3	_
SPIWP	20	SPIWP	GPIO13	—	3	_
SPICS0	21	SPICS0	GPIO14	_	3	_
SPICLK	22	SPICLK	GPIO15	—	3	_
SPID	23	SPID	GPIO16		3	_
SPIQ	24	SPIQ	GPIO17	—	3	_
GPIO18	25	GPIO18	GPIO18	—	0	USB, G
GPIO19	26	GPIO19	GPIO19		0*	USB
UORXD	27	UORXD	GPIO20		1	G
UOTXD	28	UOTXD	GPIO21	—	1	_

Table 6: IO MUX Pin Functions

Reset

The default configuration of each pin after reset:

- **0** input disabled, in high impedance state (IE = 0)
- 1 input enabled, in high impedance state (IE = 1)
- 2 input enabled, pull-down resistor enabled (IE = 1, WPD = 1)
- **3** input enabled, pull-up resistor enabled (IE = 1, WPU = 1)
- 0* input disabled, pull-up resistor enabled (IE = 0, WPU = 0, USB_WPU = 1). See details in Notes
- 1* When the value of eFuse bit EFUSE_DIS_PAD_JTAG is
 - 0, input enabled, pull-up resistor enabled (IE = 1, WPU = 1)
 - 1, input enabled, in high impedance state (IE = 1)

We recommend pulling high or low GPIO pins in high impedance state to avoid unnecessary power

consumption. You may add pull-up and pull-down resistors in your PCB design referring to Table 13, or enable internal pull-up and pull-down resistors during software initialization.

Notes

- **R** These pins have analog functions.
- USB GPIO18 and GPIO19 are USB pins. The pull-up value of a USB pin is controlled by the pin's pull-up value together with USB pull-up value. If any of the two pull-up values is 1, the pin's pull-up resistor will be enabled. The pull-up resistors of USB pins are controlled by USB_SERIAL_JTAG_DP_PULLUP bit.
- **G** These pins have glitches during power-up. See details in Table 7.

Pin	Glitch	Typical Time Period (ns)
MTCK	Low-level glitch	5
MTDO	Low-level glitch	5
GPIO10	Low-level glitch	5
UORXD	Low-level glitch	5
GPIO18	Pull-up glitch	50000

Table 7: Power-Up Glitches on Pins

3.4.2 Serial Peripheral Interface (SPI)

ESP32-C3 family features three SPI interfaces (SPI0, SPI1, and SPI2). SPI0 and SPI1 can only be configured to operate in SPI memory mode, while SPI2 can be configured to operate in both SPI memory and general-purpose SPI modes.

• SPI Memory mode

In SPI memory mode, SPI0, SPI1 and SPI2 interface with external SPI memory. Data is transferred in bytes. Up to four-line STR reads and writes are supported. The clock frequency is configurable to a maximum of 120 MHz in STR mode.

• SPI2 General-purpose SPI (GP-SPI) mode

When SPI2 acts as a general-purpose SPI, it can operate in master and slave modes. SPI2 supports two-line full-duplex communication and single-/two-/four-line half-duplex communication in both master and slave modes. The host's clock frequency is configurable. Data is transferred in bytes. The clock polarity (CPOL) and phase (CPHA) are also configurable. The SPI2 interface can connect to GDMA.

- In master mode, the clock frequency is 80 MHz at most, and the four modes of SPI transfer format are supported.
- In slave mode, the clock frequency is 60 MHz at most, and the four modes of SPI transfer format are also supported.

In most cases, the data port connection between ESP32-C3 family and external flash is as follows:

Chip Pin	External Flash Data Port				
Chip Fill	SPI Single-Line Mode	SPI Two-Line Mode	SPI Four-Line Mode		
SPID (SPID)	DI	IOO	IOO		
SPIQ (SPIQ)	DO	IO1	IO1		
SPIWP (SPIWP)	WP#		IO2		
SPIHD (SPIHD)	HOLD#		IO3		

Table 8: Connection Between ESP32-C3 Family and External Flash

3.4.3 Universal Asynchronous Receiver Transmitter (UART)

ESP32-C3 family has two UART interfaces, i.e. UART0 and UART1, which support IrDA and asynchronous communication (RS232 and RS485) at a speed of up to 5 Mbps. The UART controller provides hardware flow control (CTS and RTS signals) and software flow control (XON and XOFF). Both UART interfaces connect to GDMA via UHCl0, and can be accessed by the GDMA controller or directly by the CPU.

3.4.4 I2C Interface

ESP32-C3 family has an I2C bus interface which is used for I2C master mode or slave mode, depending on the user's configuration. The I2C interface supports:

- standard mode (100 Kbit/s)
- fast mode (400 Kbit/s)
- up to 800 Kbit/s (constrained by SCL and SDA pull-up strength)
- 7-bit and 10-bit addressing mode
- double addressing mode
- 7-bit broadcast address

Users can configure instruction registers to control the I2C interface for more flexibility.

3.4.5 I2S Interface

ESP32-C3 family includes a standard I2S interface. This interface can operate as a master or a slave in full-duplex mode or half-duplex mode, and can be configured for 8-bit, 16-bit, 24-bit, or 32-bit serial communication. BCK clock frequency, from 10 kHz up to 40 MHz, is supported.

The I2S interface supports TDM PCM, TDM MSB alignment, TDM standard, and PDM TX interface. It connects to the GDMA controller.

3.4.6 Remote Control Peripheral

The Remote Control Peripheral (RMT) supports two channels of infrared remote transmission and two channels of infrared remote reception. By controlling pulse waveform through software, it supports various infrared and other single wire protocols. All four channels share a 192 × 32-bit memory block to store transmit or receive waveform.

3.4.7 LED PWM Controller

The LED PWM controller can generate independent digital waveform on six channels. The LED PWM controller:

• can generate digital waveform with configurable periods and duty cycle. The accuracy of duty cycle can be

up to 18 bits.

- has multiple clock sources, including APB clock and external main crystal clock.
- can operate when the CPU is in Light-sleep mode.
- supports gradual increase or decrease of duty cycle, which is useful for the LED RGB color-gradient generator.

3.4.8 General DMA Controller

ESP32-C3 family has a general DMA controller (GDMA) with six independent channels, i.e. three transmit channels and three receive channels. These six channels are shared by peripherals with DMA feature. The GDMA controller implements a fixed-priority scheme among these channels.

The GDMA controller controls data transfer using linked lists. It allows peripheral-to-memory and memory-to-memory data transfer at a high speed. All channels can access internal RAM.

Peripherals on ESP32-C3 family with DMA feature are SPI2, UHCI0, I2S, AES, SHA, and ADC.

3.4.9 USB Serial/JTAG Controller

ESP32-C3 integrates a USB Serial/JTAG controller. This controller has the following features:

- USB 2.0 full speed compliant, capable of up to 12 Mbit/s transfer speed (Note that this controller does not support the faster 480 Mbit/s high-speed transfer mode)
- CDC-ACM virtual serial port and JTAG adapter functionality
- programming embedded/external flash
- CPU debugging with compact JTAG instructions
- a full-speed USB PHY integrated in the chip

3.4.10 TWAI[®] Controller

ESP32-C3 family has a TWAI[®] controller with the following features:

- compatible with ISO 11898-1 protocol
- standard frame format (11-bit ID) and extended frame format (29-bit ID)
- bit rates from 1 Kbit/s to 1 Mbit/s
- multiple modes of operation: Normal, Listen Only, and Self-Test (no acknowledgment required)
- 64-byte receive FIFO
- acceptance filter (single and dual filter modes)
- error detection and handling: error counters, configurable error interrupt threshold, error code capture, arbitration lost capture

3.5 Radio and Wi-Fi

The ESP32-C3 family radio consists of the following blocks:

- 2.4 GHz receiver
- 2.4 GHz transmitter
- bias and regulators

- balun and transmit-receive switch
- clock generator

3.5.1 2.4 GHz Receiver

The 2.4 GHz receiver demodulates the 2.4 GHz RF signal to quadrature baseband signals and converts them to the digital domain with two high-resolution, high-speed ADCs. To adapt to varying signal channel conditions, ESP32-C3 family integrates RF filters, Automatic Gain Control (AGC), DC offset cancelation circuits, and baseband filters.

3.5.2 2.4 GHz Transmitter

The 2.4 GHz transmitter modulates the quadrature baseband signals to the 2.4 GHz RF signal, and drives the antenna with a high-powered CMOS power amplifier. The use of digital calibration further improves the linearity of the power amplifier.

Additional calibrations are integrated to cancel any radio imperfections, such as:

- carrier leakage
- I/Q amplitude/phase matching
- baseband nonlinearities
- RF nonlinearities
- antenna matching

These built-in calibration routines reduce the cost, time, and specialized equipment required for product testing.

3.5.3 Clock Generator

The clock generator produces quadrature clock signals of 2.4 GHz for both the receiver and the transmitter. All components of the clock generator are integrated into the chip, including inductors, varactors, filters, regulators and dividers.

The clock generator has built-in calibration and self-test circuits. Quadrature clock phases and phase noise are optimized on chip with patented calibration algorithms which ensure the best performance of the receiver and the transmitter.

3.5.4 Wi-Fi Radio and Baseband

The ESP32-C3 family Wi-Fi radio and baseband support the following features:

- 802.11b/g/n
- 802.11n MCS0-7 that supports 20 MHz and 40 MHz bandwidth
- 802.11n MCS32
- 802.11n 0.4 µs guard interval
- data rate up to 150 Mbps
- RX STBC (single spatial stream)
- adjustable transmitting power
- antenna diversity ESP32-C3 family supports antenna diversity with an external RF switch. This switch is controlled by one or

more GPIOs, and used to select the best antenna to minimize the effects of channel imperfections.

3.5.5 Wi-Fi MAC

ESP32-C3 family implements the full 802.11 b/g/n Wi-Fi MAC protocol. It supports the Basic Service Set (BSS) STA and SoftAP operations under the Distributed Control Function (DCF). Power management is handled automatically with minimal host interaction to minimize the active duty period.

The ESP32-C3 family Wi-Fi MAC applies the following low-level protocol functions automatically:

- 4 × virtual Wi-Fi interfaces
- infrastructure BSS in Station mode, SoftAP mode, Station + SoftAP mode, and promiscuous mode
- RTS protection, CTS protection, Immediate Block ACK
- fragmentation and defragmentation
- TX/RX A-MPDU, TX/RX A-MSDU
- transmit opportunity (TXOP)
- Wi-Fi multimedia (WMM)
- GCMP, CCMP, TKIP, WAPI, WEP, BIP, WPA2-PSK/WPA2-Enterprise, and WPA3-PSK/WPA3-Enterprise
- automatic beacon monitoring (hardware TSF)
- 802.11mc FTM

3.5.6 Networking Features

Espressif provides libraries for TCP/IP networking, ESP-WIFI-MESH networking, and other networking protocols over Wi-Fi. TLS 1.0, 1.1 and 1.2 is also supported.

3.6 Bluetooth LE

ESP32-C3 family includes a Bluetooth Low Energy subsystem that integrates a hardware link layer controller, an RF/modem block and a feature-rich software protocol stack. It supports the core features of Bluetooth 5 and Bluetooth mesh.

3.6.1 Bluetooth LE Radio and PHY

Bluetooth Low Energy radio and PHY in ESP32-C3 family support:

- 1 Mbps PHY
- 2 Mbps PHY for high transmission speed and high data throughput
- coded PHY for high RX sensitivity and long range (125 Kbps and 500 Kbps)
- listen before talk (LBT), implemented in hardware
- antenna diversity with an external RF switch This switch is controlled by one or more GPIOs, and used to select the best antenna to minimize the effects of channel imperfections.

3.6.2 Bluetooth LE Link Layer Controller

Bluetooth Low Energy Link Layer Controller in ESP32-C3 family support:

- LE advertising extensions, to enhance broadcasting capacity and broadcast more intelligent data
- multiple advertisement sets
- simultaneous advertising and scanning
- multiple connections in simultaneous central and peripheral roles
- adaptive frequency hopping and channel assessment
- LE channel selection algorithm #2
- connection parameter update
- high duty cycle non-connectable advertising
- LE privacy 1.2
- LE data packet length extension
- link layer extended scanner filter policies
- low duty cycle directed advertising
- link layer encryption
- LE Ping

3.7 Low Power Management

With the use of advanced power-management technologies, ESP32-C3 family can switch between different power modes.

- Active mode: CPU and chip radio are powered on. The chip can receive, transmit, or listen.
- Modem-sleep mode: The CPU is operational and the clock speed can be reduced. Wi-Fi base band, Bluetooth LE base band, and radio are disabled, but Wi-Fi and Bluetooth LE connection can remain active.
- Light-sleep mode: The CPU is paused. Any wake-up events (MAC, host, RTC timer, or external interrupts) will wake up the chip. Wi-Fi and Bluetooth LE connection can remain active.
- Deep-sleep mode: CPU and most peripherals are powered down. Only the RTC memory is powered on. Wi-Fi connection data are stored in the RTC memory.
- Hibernation mode: The internal 20-MHz oscillator is disabled. Only one RTC timer on the slow clock is active. The RTC timer or the RTC GPIOs can wake up the chip from the Hibernation mode.

For power consumption in different power modes, please refer to Table 16.

3.8 Timers

3.8.1 General Purpose Timers

ESP32-C3 family is embedded with two 54-bit general-purpose timers, which are based on 16-bit prescalers and 54-bit auto-reload-capable up/down-timers.

The timers' features are summarized as follows:

• a 16-bit clock prescaler, from 1 to 65536

- a 54-bit time-base counter programmable to be incrementing or decrementing
- able to read real-time value of the time-base counter
- halting and resuming the time-base counter
- programmable alarm generation
- level interrupt generation

3.8.2 System Timer

ESP32-C3 family integrates a 52-bit system timer, which has two 52-bit counters and three comparators. The system timer has the following features:

- counters with a fixed clock frequency of 16 MHz
- three types of independent interrupts generated according to alarm value
- two alarm modes: target mode and period mode
- 52-bit target alarm value and 26-bit periodic alarm value
- automatic reload of counter value
- counters can be stalled if the CPU is stalled or in OCD mode

3.8.3 Watchdog Timers

The ESP32-C3 family contains three watchdog timers: one in each of the two timer groups (called Main System Watchdog Timers, or MWDT) and one in the RTC module (called the RTC Watchdog Timer, or RWDT).

During the flash boot process, RWDT and the MWDT in timer group 0 (TIMG0) are enabled automatically in order to detect and recover from booting errors.

Watchdog timers have the following features:

- four stages, each with a programmable timeout value. Each stage can be configured, enabled and disabled separately
- interrupt, CPU reset, or core reset for MWDT upon expiry of each stage; interrupt, CPU reset, core reset, or system reset for RWDT upon expiry of each stage
- 32-bit expiry counter
- write protection, to prevent RWDT and MWDT configuration from being altered inadvertently
- flash boot protection

If the boot process from an SPI flash does not complete within a predetermined period of time, the watchdog will reboot the entire main system.

3.9 Cryptographic Hardware Accelerators

ESP32-C3 family is equipped with hardware accelerators of general algorithms, such as AES-128/AES-256 (FIPS PUB 197), ECB/CBC/OFB/CFB/CTR (NIST SP 800-38A), SHA1/SHA224/SHA256 (FIPS PUB 180-4), RSA3072, and ECC. The chip also supports independent arithmetic, such as Big Integer Multiplication and Big Integer Modular Multiplication. The maximum operation length for RSA and Big Integer Modular Multiplication is 3072 bits. The maximum factor length for Big Integer Multiplication is 1536 bits.

3.10 Physical Security Features

- transparent external flash encryption (AES-XTS algorithm) with software inaccessible key prevents unauthorized readout of user application code or data.
- secure boot feature uses a hardware root of trust to ensure only signed firmware (with RSA-PSS signature) can be booted.
- HMAC module can use a software inaccessible MAC key to generate MAC signatures for identity verification and other purposes.
- Digital Signature module can use a software inaccessible secure key to generate RSA signatures for identity verification.
- World Controller provides two running environments for software. All hardware and software resources are sorted to two groups, and placed in either secure or general world. The secure world cannot be accessed by hardware in the general world, thus establishing a security boundary.

3.11 Peripheral Pin Configurations

Interface	Signal	Pin	Function
ADC	ADC1_CH0	XTAL_32K_P	Two 12-bit SAR ADCs
	ADC1_CH1	XTAL_32K_N	
	ADC1_CH2	GPIO2	
	ADC1_CH3	GPIO3	
	ADC1_CH4	MTMS	
	ADC2_CH0	MTDI	
JTAG	MTDI	MTDI	JTAG for software debugging
	MTCK	MTCK	
	MTMS	MTMS	
	MTDO	MTDO	
UART	U0RXD_in	Any GPIO pins	Two UART channels with hardware flow control
	U0CTS_in		and GDMA
	U0DSR_in		
	U0TXD_out		
	UORTS_out		
	U0DTR_out		
	U1RXD_in		
	U1CTS_in		
	U1DSR_in		
	U1TXD_out		
	U1RTS_out		
	U1DTR_out		

Table 9: Peripheral Pin Configurations

Interface	Signal	Pin	Function
12C	I2CEXT0_SCL_in	Any GPIO pins	One I2C channel in slave or master mode
	I2CEXT0_SDA_in		
	I2CEXT1_SCL_in		
	I2CEXT1_SDA_in		
	I2CEXT0_SCL_out		
	I2CEXT0_SDA_out		
	I2CEXT1_SCL_out		A
	I2CEXT1_SDA_out		
LED PWM	ledc_ls_sig_out0~5	Any GPIO pins	Six independent PWM channels
I2S	I2S00_BCK_in	Any GPIO pins	Stereo input and output from/to the audiocodec
	I2S_MCLK_in		
	I2SO_WS_in		
	I2SI_SD_in		
	I2SI_BCK_in		
	I2SI_WS_in		
	I2SO_BCK_out		
	I2S_MCLK_out		
	I2SO_WS_out		
	I2SO_SD_out		
	I2SI_BCK_out		
	I2SI_WS_out		
	I2SO_SD1_out		
Remote Control	RMT_SIG_IN0~1	Any GPIO pins	Two channels for an IR transceiver of various
Peripheral	RMT_SIG_OUT0~1		waveforms
SPI0/1	SPICLK_out_mux	SPICLK	Support Standard SPI, Dual SPI, Quad SPI, and
	SPICS0_out	SPICSO	QPI that allow connection to external flash
	SPICS1_out	Any GPIO pins	
	SPID_in/_out	SPID	
	SPIQ_in/_out	SPIQ	
	SPIWP_in/_out	SPIWP	
	SPIHD_in/_out	SPIHD	
SPI2	FSPICLK_in/_out_mux	Any GPIO pins	 Master mode and slave mode of SPI, Dual
	FSPICS0_in/_out		SPI, Quad SPI, and QPI
	FSPICS1~5_out		 Connection to external flash, RAM, and
	FSPID_in/_out		other SPI devices
	FSPIQ_in/_out		 Four modes of SPI transfer format
	FSPIWP_in/_out		Configurable SPI frequency
	FSPIHD_in/_out		64-byte FIFO or GDMA buffer
USB Serial/JTAG	USB_D+	GPIO19	USB-to-serial converter, and USB-to-JTAG
	USB_D-	GPIO18	converter
TWAI	twai_rx	Any GPIO pins	Compatible with ISO 11898-1 protocol
	twai_tx		
	twai_bus_off_on		
	twai_clkout		

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Stresses beyond the absolute maximum ratings listed in the table below may cause permanent damage to the device. These are stress ratings only, and do not refer to the functional operation of the device.

Table 10: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VDDA, VDD3P3, VDD3P3_RTC,	Voltage applied to power supply pins	-0.3	3.6	V
VDD3P3_CPU, VDD_SPI	per power domain	-0.3	5.0	V
T _{STORE}	Storage temperature	-40	150	°C

4.2 Recommended Operating Conditions

Symbol	Parameter		Min	Тур	Max	Unit
VDDA, VDD3P3	Voltage applie	ed to power supply	3.0	3.3	3.6	V
VDD3P3_RTC	pins per pow	pins per power domain		0.0	0.0	v
VDD_SPI (working as			3.0	3.3	3.6	V
input power supply) ¹			5.0	0.0	5.0	v
VDD3P3_CPU ²	Voltage applied to power supply pin		3.0	3.3	3.6	V
$ _{VDD}^{3}$	Current delive	Current delivered by external power supply			—	А
	Ambient	ESP32-C3			105	
T_A		ESP32-C3FN4	-40 -	_	85	°C
	temperature	ESP32-C3FH4			105	

Table 11: Recommended Operating Conditions

¹ For more information, please refer to Section 2.3 *Power Scheme*.

² When VDD_SPI is used to drive peripherals, VDD3P3_CPU should comply with the peripherals' specifications. For more information, please refer to Table 12.

³ If you use a single power supply, the recommended output current is 500 mA or more.

4.3 VDD_SPI Output Characteristics

Table 12: VDD_SPI Output Characteristics

Symbol	Parameter	Тур	Unit
R _{SPI}	On-resistance in 3.3 V mode	7.5	Ω

In real-life applications, when VDD_SPI works in 3.3 V output mode, VDD3P3_CPU may be affected by R_{SPI} . For example, when VDD3P3_CPU is used to drive a 3.3 V flash, it should comply with the following specifications:

 $VDD3P3_CPU > VDD_flash_min + I_flash_max^*R_{SPI}$

Among which, VDD_flash_min is the minimum operating voltage of the flash, and I_flash_max the maximum current.

For more information, please refer to section 2.3 Power Scheme.

4.4 DC Characteristics (3.3 V, 25 °C)

Symbol	Parameter	Min	Тур	Max	Unit
C_{IN}	Pin capacitance		2		pF
V_{IH}	High-level input voltage	$0.75 \times VDD^1$		VDD ¹ + 0.3	V
V_{IL}	Low-level input voltage	-0.3		$0.25 \times VDD^1$	V
$ _{IH}$	High-level input current	—		50	nA
$ _{IL}$	Low-level input current	—		50	nA
V_{OH}^2	High-level output voltage	$0.8 \times VDD^1$			V
V_{OL}^2	Low-level output voltage	—		$0.1 \times VDD^1$	V
1	High-level source current (VDD ¹ = 3.3 V,		40		mA
$ _{OH}$	$V_{OH} \ge 2.64$ V, PAD_DRIVER = 3)		40		ША
1	Low-level sink current (VDD1= 3.3 V, V_{OL} =		28		mA
I_{OL}	0.495 V, PAD_DRIVER = 3)	_	20	_	ШA
R_{PU}	Pull-up resistor	_	45	-	kΩ
R_{PD}	Pull-down resistor	-	45	—	kΩ
V_{IH_nRST}	Chip reset release voltage	0.75 × VDD ¹	-	VDD ¹ + 0.3	V
V_{IL_nRST}	Chip reset voltage	-0.3		$0.25 \times VDD^1$	V

¹ VDD is the I/O voltage for a particular power domain of pins.

 2 V_{OH} and V_{OL} are measured using high-impedance load.

4.5 ADC Characteristics

Table 14: ADC Characteristics

Symbol	Parameter	Min	Max	Unit
DNL (Differential nonlinearity) ¹	ADC connected to an external	-7	7	LSB
DNL (Differential Hornin learity)	100 nF capacitor; DC signal input;	-7	1	LOD
INL (Integral nonlinearity)	ambient temperature at 25 °C;	-12	12	LSB
INC (Integrationinieanty)	Wi-Fi off	-12	12	LOD
Sampling rate	—		2	Msps
	ATTENO	0	750	mV
Effective Range	ATTEN1	0	1050	mV
	ATTEN2	0	1300	mV
	ATTEN3	0	2500	mV

¹ To get better DNL results, you can sample multiple times and apply a filter, or calculate the average value.

4.6 Current Consumption

The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitters' measurements are based on a 100% duty cycle.

Work mode	Description		Peak
			(mA)
Active (RF working)		802.11b, 1 Mbps, @21 dBm	325
	TX	802.11g, 54 Mbps, @19 dBm	272
		802.11n, HT20, MCS 7, @18.5 dBm	260
		802.11n, HT40, MCS 7, @18.5 dBm	262
	RX	802.11b/g/n, HT20	84
		802.11n, HT40	87

Table 15: Current Consumption Depending on RF Modes

Table 16: Current Consumption Depending on Work Modes

Work mode	Description	Тур	Unit	
Modem-sleep ^{1, 2}	The CPU is	160 MHz	20	mA
Modelli-sleep	powered on ³	Normal speed: 80 MHz	15	mA
Light-sleep	—	130	μA	
Deep-sleep	RTC timer + R	5	μA	
Power off	CHIP_PU is se	t to low level, the chip is powered off	1	μA

¹ The current consumption figures in Modem-sleep mode are for cases where the CPU is powered on and the cache idle.

² When Wi-Fi is enabled, the chip switches between Active and Modem-sleep modes. Therefore, current consumption changes accordingly.

³ In Modem-sleep mode, the CPU frequency changes automatically. The frequency depends on the CPU load and the peripherals used.

4.7 Reliability

Test Item	Test Conditions	Test Standard
HTOL (High Temperature	125 °C, 1000 hours	JESD22-A108
Operating Life)	123 C, 1000 Hours	JLODZZ-ATUO
ESD (Electro-Static	HBM (Human Body Mode) ¹ ± 2000 V	JESD22-A114
Discharge Sensitivity)	CDM (Charge Device Mode) ² ± 500 V	JESD22-C101F
Latab un	Current trigger ± 200 mA	JESD78
Latch up	Voltage trigger 1.5 × VDD _{max}	JLODIO
	Bake 24 hours @125 °C	J-STD-020, JESD47,
Preconditioning	Moisture soak (level 3: 192 hours @30 °C, 60% RH)	JESD22-A113
	IR reflow solder: 260 + 0 °C, 20 seconds, three times	JLODZZ-ATTO
TCT (Temperature Cycling	–65 °C / 150 °C, 500 cycles	JESD22-A104
Test)	-00 07 100 0, 000 cycles	JLODZZ-ATU4
Autoclave Test	121 °C, 100% RH, 96 hours	JESD22-A102

Cont'd on next page

Test Item	Test Conditions	Test Standard			
uHAST (Highly					
Accelerated Stress Test,	130 °C, 85% RH, 96 hours	JESD22-A118			
unbiased)					
HTSL (High Temperature	150 °C, 1000 hours	JESD22-A103			
Storage Life)		JESD22-A105			

Table 17 – cont'd from previous page

¹ JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

² JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

4.8 Wi-Fi Radio

Table 18: Frequency

Parameter	Min	Typ	Max
	(MHz)	(MHz)	(MHz)
Center frequency of operating channel	2412	+	2484

4.8.1 Wi-Fi RF Transmitter (TX) Specifications

Table 19: TX Power with Spectral Mask and EVM Meeting 802.11 Standards

Rate	Min	Тур	Max
nale	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps	_	21.0	—
802.11b, 11 Mbps		21.0	_
802.11g, 6 Mbps	—	21.0	—
802.11g, 54 Mbps		19.0	
802.11n, HT20, MCS 0		20.0	—
802.11n, HT20, MCS 7		18.5	
802.11n, HT40, MCS 0		20.0	—
802.11n, HT40, MCS 7		18.5	

Table 20: TX EVM Test

Rate	Min (dB)	Typ (dB)	SL ¹ (dB)
802.11b, 1 Mbps, @21 dBm	—	-24.8	-10
802.11b, 11 Mbps, @21 dBm	—	-24.7	-10
802.11g, 6 Mbps, @21 dBm		-22.1	-5
802.11g, 54 Mbps, @19 dBm		-28.0	-25
802.11n, HT20, MCS 0, @20 dBm		-26.4	-5
802.11n, HT20, MCS 7, @18.5 dBm		-29.4	-27
802.11n, HT40, MCS 0, @20 dBm		-27.8	-5
802.11n, HT40, MCS 7, @18.5 dBm		-29.3	-27

¹ SL stands for standard limit value.

4.8.2 Wi-Fi RF Receiver (RX) Specifications

Table 21: RX Sensitivity

Dette	Min	Тур	Max	
Rate	(dBm)	(dBm)	(dBm)	
802.11b, 1 Mbps		-98.4		
802.11b, 2 Mbps		-96.0		
802.11b, 5.5 Mbps	_	-93.0		
802.11b, 11 Mbps	_	-88.6		
802.11g, 6 Mbps	_	-93.8	_	
802.11g, 9 Mbps	_	-92.2	—	
802.11g, 12 Mbps	_	-91.0	-	
802.11g, 18 Mbps	_	-88.4	K –	
802.11g, 24 Mbps		-85.8		
802.11g, 36 Mbps	_	-82.0	-	
802.11g, 48 Mbps	_	-78.0		
802.11g, 54 Mbps		-76.6	—	
802.11n, HT20, MCS 0	_	-93.6	—	
802.11n, HT20, MCS 1		-90.8	—	
802.11n, HT20, MCS 2	-	-88.4		
802.11n, HT20, MCS 3		-85.0		
802.11n, HT20, MCS 4	—	-81.8		
802.11n, HT20, MCS 5	-	-77.8		
802.11n, HT20, MCS 6	_	-76.0		
802.11n, HT20, MCS 7		-74.8	—	
802.11n, HT40, MCS 0	_	-90.0		
802.11n, HT40, MCS 1		-88.0		
802.11n, HT40, MCS 2		-85.2		
802.11n, HT40, MCS 3		-82.0		
802.11n, HT40, MCS 4		-78.8		
802.11n, HT40, MCS 5		-74.6		
802.11n, HT40, MCS 6		-73.0		
802.11n, HT40, MCS 7		-71.4		

Table 22: Maximum RX Level

Rate	Min	Тур	Max
nale	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps		5	—
802.11b, 11 Mbps	—	5	—
802.11g, 6 Mbps		5	—
802.11g, 54 Mbps		0	—
802.11n, HT20, MCS 0	—	5	—
802.11n, HT20, MCS 7		0	

Cont'd on next page

)

Data	Min	Тур	Max
Rate	(dBm)	(dBm)	(dBm)
802.11n, HT40, MCS 0	_	5	
802.11n, HT40, MCS 7		0	_

Table 22 - cont'd from previous page

Table 23: RX Adjacent Channel Rejection

Rate	Min (dB)	Typ (dB)	Max (dB)	
802.11b, 1 Mbps		35	—	
802.11b, 11 Mbps	_	35	—	
802.11g, 6 Mbps		31	-	
802.11g, 54 Mbps		14	_	
802.11n, HT20, MCS 0		31		
802.11n, HT20, MCS 7		13		
802.11n, HT40, MCS 0	-	19	—	
802.11n, HT40, MCS 7	_	8	—	

4.9 Bluetooth LE Radio

4.9.1 Bluetooth LE RF Transmitter (TX) Specifications

Table 24: Transmitter General Characteristics

Parameter	Min	Тур	Max	Unit
RF transmit power		0	_	dBm
Gain control step	_	3		dB
RF power control range	-27		18	dBm

Table 25: Transmitter Characteristics - Bluetooth LE 1M

Para	ameter	Description	Min	Тур	Max	Unit
		$F = F0 \pm 2 MHz$	—	-37.62	—	dBm
In-ba	and emissions	$F = F0 \pm 3 MHz$		-41.95	—	dBm
		$F = F0 \pm > 3 MHz$	_	-44.48	—	dBm
		$\Delta f 1_{\rm avg}$	_	245.00	—	kHz
Mod	lulation characteristics	$\Delta f 2_{ m max}$	_	208.00	—	kHz
		$\Delta f 2_{\rm avg} / \Delta f 1_{\rm avg}$		0.93	—	_
Carri	ier frequency offset			-9.00	—	kHz
		$ f_0 - f_n _{n=2, 3, 4,k}$	_	1.17	—	kHz
Carri	ier frequency drift	$ f_1 - f_0 $		0.30	—	kHz
		$ f_{n} - f_{n-5} _{n=6, 7, 8,k}$		4.90		kHz

Parameter	Description	Min	Тур	Max	Unit
	$F = F0 \pm 4 MHz$	_	-43.55	—	dBm
In-band emissions	$F = F0 \pm 5 MHz$		-45.26	—	dBm
	$F = F0 \pm > 5 MHz$	—	-47.00	—	dBm
	$\Delta f 1_{\mathrm{avg}}$	—	497.00	—	kHz
Modulation characteristics	$\Delta f 2_{\max}$	—	398.00	—	kHz
	$\Delta f 2_{\rm avg} / \Delta f 1_{\rm avg}$		0.95	—	-
Carrier frequency offset	—	—	-9.00	—	kHz
	$ f_0 - f_n _{n=2, 3, 4,k}$	—	0.46	-	kHz
Carrier frequency drift	$ f_1 - f_0 $	—	0.70		kHz
	$ f_{n} - f_{n-5} _{n=6, 7, 8,k}$		6.80	—	kHz

Table 26:	: Transmitter Characteristics - B	Bluetooth LE 2M
-----------	-----------------------------------	-----------------

Table 27: Transmitter Characteristics - Bluetooth LE 125K

Parameter	Description	Min	Тур	Max	Unit
	$F = F0 \pm 2 MHz$		-37.90	—	dBm
In-band emissions	$F = F0 \pm 3 MHz$	_	-41.00	—	dBm
	$F = F0 \pm > 3 MHz$	_	-42.50	—	dBm
Modulation characteristics	$\Delta f 1_{ m avg}$	—	252.00	—	kHz
WOULIALION CHARACLERISLICS	$\Delta f 1_{ m max}$	+	200.00	—	kHz
Carrier frequency offset	-	-	-13.70	—	kHz
	$ f_0 - f_n _{n=1, 2, 3,k}$	—	1.52	—	kHz
Carrier frequency drift	$ f_0 - f_3 $		0.65	—	kHz
	$ f_{n} - f_{n-3} _{n=7, 8, 9,k}$		0.70		kHz

Table 28: Transmitter Characteristics - Bluetooth LE 500K

Parameter	Description	Min	Тур	Max	Unit
	$F = F0 \pm 2 MHz$	_	-37.90	—	dBm
In-band emissions	$F = F0 \pm 3 MHz$		-41.30	—	dBm
	$F = F0 \pm > 3 MHz$		-42.80	—	dBm
Modulation characteristics	$\Delta f 2_{\mathrm{avg}}$	_	220.00	—	kHz
	$\Delta f 2_{ m max}$		205.00	—	kHz
Carrier frequency offset	—	_	-11.90	—	kHz
	$ f_0 - f_n _{n=1, 2, 3,k}$		1.37	—	kHz
Carrier frequency drift	$ f_0 - f_3 $		1.09	—	kHz
	$ f_{n} - f_{n-3} _{n=7, 8, 9,k}$		0.51	—	kHz

4.9.2 Bluetooth LE RF Receiver (RX) Specifications

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	—		-97		dBm
Maximum received signal @30.8% PER	—		10		dBm
Co-channel C/I	—		8		dB
	F = F0 + 1 MHz		-4	—	dB
	F = F0 - 1 MHz		-3	_	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	_	-32		dB
Adjacent channel selectivity C/I	F = FO - 2 MHz		-36		dB
	$F \ge FO + 3 MHz^{(1)}$		-	—	dB
	$F \le F0 - 3 MHz$		-39		dB
Image frequency	—		-29		dB
	$F = F_{image} + 1 MHz$	-	-38	_	dB
Adjacent channel to image frequency	$F = F_{image} - 1 MHz$	—	-34	-	dB
	30 MHz ~ 2000 MHz	—	-9	_	dBm
Out of band blocking parformance	2003 MHz ~ 2399 MHz		–18		dBm
Out-of-band blocking performance	2484 MHz ~ 2997 MHz	—	-16	—	dBm
	3000 MHz ~ 12.75 GHz		-6	—	dBm
Intermodulation	-		-44		dBm

Table 29: Receiver Characteristics - Bluetooth LE 1M

¹ Refer to the value of Adjacent channel to image frequency when $F = F_{image} - 1$ MHz.

Table 30: Receiver Characteristics - Bluetooth LE 2M

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	-		-94		dBm
Maximum received signal @30.8% PER	—		-1	_	dBm
Co-channel C/I	—		10		dB
	F = F0 + 2 MHz	_	-7	_	dB
	F = FO - 2 MHz		-7		dB
Adjacent channel selectivity C/I	$F = FO + 4 MHz^{(1)}$		—		dB
Adjacent channel selectivity C/1	F = FO - 4 MHz		-34		dB
	$F \ge F0 + 6 MHz$		-39		dB
	$F \le F0 - 6 MHz$		-39		dB
Image frequency	—		-27		dB
Adjacent channel to image frequency	$F = F_{image} + 2 MHz$		-39		dB
Adjacent channel to image frequency	$F = F_{image} - 2 \text{ MHz}^{(2)}$		—		dB
	30 MHz ~ 2000 MHz		-17	_	dBm
Out-of-band blocking performance	2003 MHz ~ 2399 MHz		–19		dBm
Out-or-band blocking performance	2484 MHz ~ 2997 MHz		–16		dBm
	3000 MHz ~ 12.75 GHz		-22		dBm
Intermodulation	—		-40		dBm

¹ Refer to the value of Image frequency.

² Refer to the value of Adjacent channel selectivity C/I when F = F0 + 2 MHz.

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	—		-105	—	dBm
Maximum received signal @30.8% PER	—		10	—	dBm
Co-channel C/I	—		2	—	dB
	F = F0 + 1 MHz		-6	—	dB
	F = F0 - 1 MHz		-5	—	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	—	-40	-1	dB
Aujacent channel selectivity 0/1	F = F0 - 2 MHz		-42	—	dB
	$F \ge FO + 3 MHz^{(1)}$		<u> </u>		dB
	$F \le FO - 3 MHz$		-46		dB
Image frequency			-34	—	dB
Adjacent channel to image frequency	$F = F_{image} + 1 MHz$		-44		dB
	$F = F_{image} - 1 MHz$	_	-37		dB

Table 31: Receiver Characteristics - Bluetooth LE 125K

¹ Refer to the value of Adjacent channel to image frequency when $F = F_{image} - 1$ MHz.

Table 32: Receiver Characteristics - Bluetooth LE 500K

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	-	_	-100	_	dBm
Maximum received signal @30.8% PER	-		10		dBm
Co-channel C/I	-	_	3	_	dB
	F = F0 + 1 MHz		-5		dB
	F = F0 – 1 MHz		-7	—	dB
Adjacent channel selectivity C/I	F = FO + 2 MHz		-39		dB
Adjacent channel selectivity C/1	F = F0 - 2 MHz		-40		dB
	$F \ge FO + 3 MHz^{(1)}$		_	_	dB
	$F \le FO - 3 MHz$		-40		dB
Image frequency	_		-34		dB
Adjacent channel to image frequency	$F = F_{image} + 1 MHz$		-43	—	dB
Adjacent channel to image requercy	$F = F_{image} - 1 MHz$		-38		dB

¹ Refer to the value of Adjacent channel to image frequency when $F = F_{image} - 1$ MHz.

5. Package Information

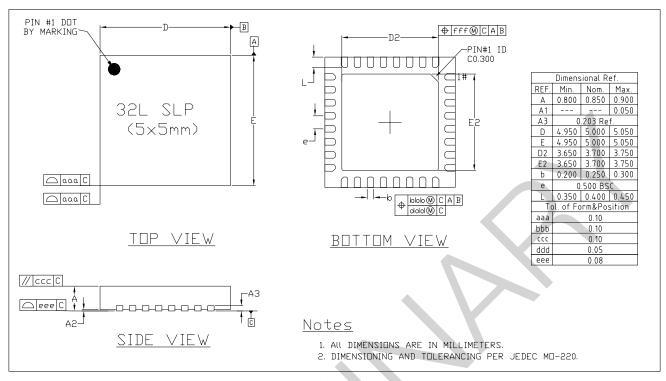


Figure 8: QFN32 (5×5 mm) Package

Note:

For information about tape, reel, and product marking, please refer to *Espressif Chip-Packing Information*.

Revision History

Date	Version	Release Notes
2021-04-07	V0.7	 Updated information about USB Serial/JTAG Controller; Added GPIO2 to Section 2.4 <i>Strapping Pins</i>; Updated Figure <i>Address Mapping Structure</i>; Added Table <i>General Purpose Input / Output Interface (GPIO)</i> and Table <i>General Purpose Input / Output Interface (GPIO)</i> in Section 3.4.1 <i>General Purpose Input / Output Interface (GPIO)</i>; Updated information about SPI2 in Section 3.4.2 <i>Serial Peripheral Interface (SPI)</i>; Updated fixed-priority channel scheme in Section 3.4.8 <i>General DMA Controller</i>; Updated Table <i>Reliability</i>.
2021-01-18	V0.6	 Clarified that of the 400 KB SRAM, 16 KB is configured as cache; Updated maximum value to standard limit value in Table <i>Wi-Fi RF Transmitter (TX) Specifications</i> in Section 4.8.1 <i>Wi-Fi RF Transmitter (TX) Specifications</i>.
2021-01-13	V0.5	 Updated information about Wi-Fi; Added connection between embedded flash ports and chip pins to table notes in Section 2.2 <i>Pin Description</i>; Updated Figure <i>ESP32-C3 Family Power Scheme</i>, added Figure <i>ESP32-C3 Family Power-up and Reset Timing</i> and Table <i>Power Scheme</i> in Section 2.3 <i>Power Scheme</i>; Added Figure <i>Setup and Hold Times for the Strapping Pin</i> and Table <i>Strapping Pins</i> in Section 2.4 <i>Strapping Pins</i>; Updated Table <i>Peripheral Pin Configurations</i> in Section 3.11 <i>Peripheral Pin Configurations</i>; Added Chapter 4 <i>Electrical Characteristics</i>; Added Chapter 5 <i>Package Information</i>.
2020-11-27	V0.4	Preliminary version.

Solutions, Documentation and Legal Information

Must-Read Documents

- ESP32-C3 Technical Reference Manual
- ESP-IDF Programming Guide
- Espressif Product Ordering Information
- Certificates
- <u>Notification Subscription</u>

Sales and Technical Support

- Sales Questions
- <u>Technical Inquiries</u>
- Get Samples

Developer Zone

• ESP32 Forum

- GitHub
- <u>Courses</u>
- <u>Videos</u>

Products

- <u>SoCs</u>
- Modules
- DevKits

Must-Have Resources

- SDKs and Demos
- <u>APPs</u>
- <u>Tools</u>
- AT

www.espressif.com

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice. ALL THIRD PARTY'S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2021 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.